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Abstract. The energy dependence of various particle ratios is calculated within the Ultra-relativistic Quan-
tum Molecular Dynamics approach and compared with the hadron resonance gas (HRG) model and mea-
surements from various experiments, including RHIC-BES, SPS and AGS. It is found that the UrQMD
particle ratios agree well with the experimental results at the RHIC-BES energies. Thus, we have utilized
UrQMD in simulating particle ratios at other beam energies down to 3 GeV, which will be accessed at
NICA and FAIR future facilities. We observe that the particle ratios for crossover and first-order phase
transition, implemented in the hybrid UrQMD v3.4, are nearly indistinguishable, especially at low energies
(at large baryon chemical potentials or high density).

1 Introduction

One of the main goals of the heavy-ion experiments is
the characterization of strongly interacting matter un-
der extreme conditions of high temperature and den-
sity [1]. Examining the possible quark-hadron phase tran-
sition(s) plays a crucial role in verifying the quantum
chromodynamics (QCD), the theory of strong interac-
tions, which predicts that the confined hadrons likely un-
dergo phase transition(s) to partonic matter called quark-
gluon plasma (QGP) [2]. So far, various signatures for
the QGP formation have been verified, experimentally [3].
The statistical-thermal models [4–11] are successful ap-
proaches explaining —among others— the produced par-
ticle yields and their ratios. At chemical equilibrium, it
is conjectured that the particle ratios are well described
by at least two parameters, the baryon chemical poten-
tial (μb) and the freezeout temperature (Tch). The chem-
ical freezeout is defined as a stage during the evolu-
tion of the high-energy collision at which the inelastic
collisions are assumed to disappear and the number of

a e-mail: a.tawfik@eng.mti.edu.eg

produced particle should be fixed. Experiments at the
Schwerionensynchrotron (SIS18) [12, 13], the Alternating
Gradient Synchrotron (AGS) [5], the Super Proton Syn-
chrotron (SPS) [7], and the Relativistic Heavy-Ion Collider
(RHIC) [14–17] have been successfully reproduced within
the statistical-thermal approaches [4].

The dependence of both freezeout parameters (Tch

and μb) on the nucleon-nucleon center-of-mass energies
(
√

sNN) known as the chemical freezeout boundary looks
very similar to the QCD phase-diagram separating con-
fined hadrons from deconfined QGP [18]. In lattice QCD
simulations [19, 20], which are very reliable at μb/T ≤ 1,
i.e.,

√
sNN greater than top SPS energies, the dependence

of Tch on μb appears very close to the QCD critical line.
At larger μb (lower energies), both boundaries become dis-
tinguishable [21]. In this region, lattice QCD simulations
suffer from serious numerical difficulties (the so-called sign
problem). Thus, we are left with effective models such as
statistical-thermal models and QCD-like approaches in-
cluding linear-sigma and Nambu–Jona-Lasinio models. So
far, there are various phenomenological proposals suggest-
ing universal conditions describing the chemical freezeout
boundary. For a recent review, the readers are kindly ad-
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vised to consult ref. [4]. Recently, the possible interrela-
tions among the various freezeout conditions have been
derived [21].

While the region of the high temperature and low bary-
onic density at the QCD phase-diagram are explored by
the experiments of the RHIC and the LHC, the region of
relatively low and intermediate energy will be covered by
the future programs: BES-II at RHIC, Nuclotron-based
Ion Collider fAcility (NICA) at the Joint Institute for
Nuclear Research (Dubna) and the Facility for Antipro-
ton and Ion Research (FAIR, Germany). At NICA there
will be the fixed target experiment BM@N with the beam
energy Ekin = 1–4.5AGeV and the collider experiment
MPD with the collision energy range 4 ≤ √

sNN ≤ 11GeV.
At the FAIR, the fixed target experiment CBM with Ekin

up to 11AGeV (SIS100) will work.
In the present work we utilize the hadron resonance

gas (HRG) [21] and the Ultra-relativistic Quantum Molec-
ular Dynamics (UrQMD) v3.4 models [22] in order to esti-
mate various particle ratios at energies ranging for

√
sNN

from 3 to 19.6GeV. The freezeout parameters (Tch and
μb) are determined from the statistical fit of various par-
ticle ratios from UrQMD simulations of Au-Au collisions
at

√
sNN = 3, 5, 7.7, 11.5 and 19.6GeV. The last three en-

ergies are the part of the RHIC beam energy scan program
(BES I) and at these energies the experimental values of
freezout parameters are obtained also. A comparison of
the simulated and these experimental results is discussed.
The convincing agreement between UrQMD simulated
and experimental parameters encourages us to extend the
study to the other beam energies through UrQMD simu-
lations lower down to 3GeV, in which the baryon density
likely reaches its maximum and shall be covered by NICA
and FAIR future facilities.

It is obvious that HRG is an effective statistical model
which is only applicable to the produced particles in their
final stages of the temporal and spatial evolution of the
high-energy collision. Thus, both chiral and deconfinement
phase transition(s) cannot be modelled in such statistical
approaches, which are based on Hagedorn bootstrap pic-
ture [21].

The present paper is organized as follows. Section 2
gives short reviews on both approaches: HRG and UrQMD
models. In sect. 3, the energy dependence of various par-
ticle ratios (sect. 3.1) and the deduced freezeout param-
eters (sect. 3.2) are presented. In sect. 4, the conclusions
are outlined.

2 Approaches

In the present work, the hybrid UrQMD model is used
to calculate various particle ratios at energies ranging be-
tween 3 and 19.6GeV. The limitation of this energy range
is appropriate as long as the location of the critical end-
point (CEP) is not known yet. CEP widely varies in both
μ- and T -dimension. The freezeout parameters: temper-
ature (Tch) and baryon chemical potential (μb), shall be
determined from the statistical fits of various particle ra-
tios from the HRG model to experimental data and to

UrQMD simulations, separately. The latter were gener-
ated with first-order or crossover phase transitions. Our
UrQMD ensemble contains 10 000 and 150 000 events for
high and low energies, respectively.

2.1 Hadron Resonance Gas (HRG) model

In grand-canonical ensemble, the partition function of an
ideal gas consisting of hadrons and resonances is given
as [4]

Z(T, V, μ) = Tr
[
exp

(
μN − H

T

)]
, (1)

where H is the Hamiltonian and μ and T are the chemical
potential and the temperature of the system of interest,
respectively. The Hamiltonian counts the relevant degrees-
of-freedom of confined and strongly interacting medium.
Interactions (correlations) can be included implicitly, for
instance, in the ones responsible for the resonance forma-
tion, i.e., strong interactions. In the HRG model, eq. (1)
sums up contributions from a large number of hadron res-
onances [4] consisting of light and strange quark flavors
as listed in the most recent particle data group compila-
tion with masses ≤ 2GeV [23]. This corresponds to 388
different states of mesons and baryons besides their anti-
particles. More details can be found in ref. [4]. The decay
branching ratios are also taken into consideration. For the
decay channels with not-yet-measured probabilities, we
follow the rules given in ref. [24]. No finite size correction
was applied [6];

ln Z(T, V, μ)=
∑

i

ln Zi(T, V, μ)

=±V gi

2π2

∫ ∞

0

p2dp ln
[
1 ± λi exp

(
−εi(p)

T

)]
,

(2)

where ± represent fermions and bosons, respectively, εi =√
p2 + m2

i is the dispersion relation of the i-th particle
and λi is its fugacity factor [4]

λi(T, μ) = exp
(

biμb + SiμS + QiμQ

T

)
, (3)

where bi(μb), Si(μS) and Qi(μQ) are baryon, strange and
charge quantum numbers (their corresponding chemical
potentials) of the i-th hadron, respectively.

The number density of i-th particle can be derived
from the derivative with respect to the chemical potential
of the corresponding quantum number. Such a particle
can be a stable hadron and decay product out of heavy
resonances,

ni(T, μ) =
gi

2π2

∫ ∞

0

p2dp

exp
[μi−εi(p)

T

]
± 1

+
∑
j �=i

bj→i
gj

2π2

∫ ∞

0

p2dp

exp
[μj−εj(p)

T

]
± 1

, (4)
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where bj→i is the decay branching ratio of the j-th hadron
resonance into the i-th stable particle of antiparticle. In a
statistical fit of various particle ratios with the UrQMD
simulations or with the measurements at different ener-
gies, T and μb are taken as free parameters. Details about
the statistical fit can be taken from refs. [25, 26]. Their
resulting values can be related to each other and each of
them to the center-of-mass energy (

√
sNN), separately [4].

It is worth emphasizing where or when HRG can be
applied. As mentioned, different numerical methods and
algorithms seem to fail while trying to reproduce even the
well-identified particles (low-lying states, such as pions,
kaons and protons) at very low beam energies or equiva-
lently very large baryon chemical potentials. In this energy
limit, some particle species cannot be accessed. This is il-
lustrated in sect. 3, especially fig. 4. In general, the HRG
model is a very powerful statistical approach. In spite of
its simplicity, it has so far a wide range of implications,
especially in describing various aspects of the lattice QCD
thermodynamics and the particle production in heavy-ion
collisions. The latter are limited to the final state, after the
chemical freezeout era. All prior eras of the relativistic col-
lision are not accessible by the HRG model. These would
be subject to transport approaches. The UrQMD charac-
terizes almost the entire evolution of the colliding system
from very early stages up to the particle production, in-
cluding hydrodynamical evolution and particlization. This
transport approach will be elaborated in the section that
follows.

2.2 Ultra-relativistic Quantum Molecular Dynamics
(UrQMD) model

The UrQMD event-generator [27] is a well-known sim-
ulation approach enabling the characterization of high-
energy collisions. It simulates the phase space of such
collisions and implements a large set of Monte Carlo so-
lutions for a large number of paired partial differential
equations describing the evolution of phase space densi-
ties. The UrQMD model simulates the development of the
colliding system from a possibly very early stage (depend-
ing on the chosen configuration) up to the final state of
the particle production. Its large number of unknown pa-
rameters could be fixed from experimental results and by
theoretical assumptions.

In the present calculations, we use hybrid UrQMD
v3.4 [22] which has been tested and gives reasonable
results in the energy range from Elab = 2–160AGeV
in standard parameter calculations. Furthermore, hybrid
UrQMD v3.4 provides the possibility to use two types of
the phase transition: first-order and crossover. This allows
the study of the possible effects of the hadronization pro-
cesses on the final-state particle production.

For the case of crossover, in hybrid UrQMD v3.4 the
equation of state (EoS) for the fluid dynamical evolution
is borrowed from the SU(3) parity doublet model in which
quark degrees of freedom besides the thermal contribution
of the Polyakov loop are included [28,29]. This EoS qual-
itatively agrees with the lattice QCD results at vanish-

ing baryon chemical potential and —most importantly—
is conjectured to be applicable at finite baryon chemical
potentials, as well. By the end of the hydrodynamical evo-
lution, the active EoS is changed to the one characterizing
the hadron gas. Accordingly, it is assured that the active
degrees of freedom on both sides of the transition hyper-
surface are exactly equivalent [28–30].

For the case of a first-order phase transition, in hybrid
UrQMD v3.4 the approach proposed in [31] is used. The
hadron matter phase is described by a σ − ω-type model
for the nuclear matter part and a bag model is employed
for the quark-gluon plasma phase, with a first-order phase
transition between both phases.

For the sake of completeness, we highlight two dif-
ferences between crossover and first-order phase transi-
tions, namely the latent heat and the degrees of freedom.
In first-order phase transition both are larger than those
in the crossover. Furthermore, the crossover takes place
smoothly, i.e. a relative wide range of temperatures is
needed to convert the QCD matter from pure hadron to
parton matter or vice versa, while there is a prompt jump
in the case of first-order phase transition, i.e. the critical
temperature becomes relatively sharp [32].

As a limitation, there is some influence of a more tech-
nical aspect of UrQMD to its physical outcomes. When
the program switches from the hydrodynamical treatment
of the high-density stage of the hadronic medium back to
the “normal” particle-based transport code, there might
occur some bias to the resulting particle statistics [33].
Because we selected the same particlization procedure in
both cases, the differences of the particle ratios between
first-order and crossover phase transition might appear
smaller than implied by the physical model.

3 Results and discussion

The particles ratios presented in the present work are
measured at

√
sNN = 3, 5, 7, 7.7, 9, 11, 11.5, 13, 19 and

19.6GeV. The beam energies 7.7, 11.5 and 19.6GeV were
part of the STAR BES program. For these energies compa-
rable measurements from experiments of the Superproton
synchrotron (SPS), such as NA49, NA44, and NA57 [24],
exist. The energy range

√
sNN = 3–11GeV will be covered

by the future NICA facility. Thus, it is of great interest to
study the particle ratios in both energy regions in experi-
ments and models. If the hybrid UrQMD model can repro-
duce the STAR results apparently well, further UrQMD
simulations at 3 and 5GeV will be taken as predictions
for the future experiments at NICA.

From an ensemble of events created by the hybrid
UrQMD model at various beam energies and taking into
account two types of the quark-hadron phase transition
(crossover and first-order), we shall study the ratios of var-
ious particle species in energy dependence. From the sta-
tistical fit of the HRG model to the ones simulated with
UrQMD and independently to the data from the STAR
experiment, both freezeout parameters can be deduced.
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Fig. 1. The energy dependence of different particle ratios calculated from hybrid UrQMD with first-order (dashed curves) and
crossover (triple-dot–dashed curves) phase transition(s) is compared with various measurements: K+/π+ (a) [34–36], K−/π−

(b) [34–37], p̄/π− (c) [34–36,38], Λ/π− (d) [34–37,39–41], Ω/π− (e) [34–37,40–42]. The solid curve represents the corresponding
calculations from the HRG model.

3.1 Energy dependence of various particle ratios

Figure 1 presents the energy dependence of the parti-
cle ratios K+/π+ (a), K−/π− (b), p̄/π− (c), Λ/π− (d)
and Ω/π− (e). They are generated from the hybrid-
UrQMD event generator at various energies and by tak-
ing into account two types of the quark-hadron phase
transition (crossover (triple-dot-dashed curves) and first-
order (dashed curves)). The UrQMD results are compared
with measurements (symbols): K+/π+ (a) [34–36], K−/π−

(b) [34–37], p̄/π− (c) [34–36,38], Λ/π− (d) [34–37,39–41],

Ω/π− (e) [34–37, 40–42] and the corresponding calcula-
tions from the HRG model.

The HRG particle ratios are determined from eq. (4),
in which the baryon chemical potential (μb) is replaced by√

sNN [25]

μb =
a

1 + b
√

sNN
, (5)

where a = 1.245±0.094GeV and b = 0.264±0.028GeV−1.
The HRG calculations are in good agreement with both
measurements and UrQMD predictions, at least qualita-
tively. For some of the particle ratios, the agreement is
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Fig. 2. The same as in fig. 1 but for π−/π+ (a) [34–37], K−/K+ (b) [34–37], p̄/p (c) [34–36, 38], Λ̄/Λ (d) [34–37, 39–41] and
Σ̄/Σ (e) [43–45].

better than for the other ratios. It should be noticed that
these calculations will be fine-tuned in order to reproduce
both UrQMD and the experimental results. In doing this,
both freezeout parameters will be taken as free variables.
Adjusting both the parameters brings HRG calculations
to a quantitative agreement with the UrQMD and the ex-
perimental results. It is worth noticing that the particle
ratios from both types of phase transition are almost in-
distinguishable, especially at lower energies (larger baryon
chemical potentials).

In fig. 2, the energy dependence of UrQMD π−/π+,
K−/K+, p̄/p, Λ̄/Λ and Σ̄/Σ are illustrated and com-
pared with HRG calculations and various measured ratios;
π−/π+ (a) [34–37], K−/K+ (b) [34–37], p̄/p (c) [34–36,38],

Λ̄/Λ (d) [34–37, 39–41] and Σ̄/Σ (e) [43–45]. Again, it is
obvious that both orders of the phase transitions imple-
mented in the hybrid UrQMD —at least qualitatively—
result in both measured (STAR) and calculated (HRG)
particle ratios. Concretely, the particle ratios from
crossover phase transition are slightly higher than the
ones from the first-order. Furthermore, we observe that
the agreement between UrQMD simulations or HRG cal-
culations for these particle-antiparticle ratios and their
measurements is fairly convincing, at least qualitatively.

Characterizing the energy dependence of ten particle
ratios from simulations, calculations and measurements,
and being successful in reproducing, at least qualitatively,
both UrQMD predictions and STAR measurements by
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Table 1. Estimated freezeout parameters, Tch and μb in MeV
from the statistical fits of the HRG calculations with the
hybrid-UrQMD simulations, in which a crossover phase tran-
sition is taken into consideration.

√
sNN [GeV] Tch [MeV] μb [MeV] χ2/dof

3 101 636 6.3/6

5 109.5 599 5.0/6

7.7 132 436 15.5/10

9 132.4 429 9.76/10

11.5 138.1 391 8.95/10

13 140 355 10.47/10

19.6 145 200 8.58/10

means of the statistical-thermal HRG furnish us with a
solid argumentation for the attempt to deduce the freeze-
out parameters from the given data sets. In doing this,
we assume that the UrQMD simulations take the posi-
tion of experiments such as STAR. The determination
of the freezeout parameters at the energies covered by
STAR BES; 7.7, 11.5 and 19.6GeV are compatible with
the UrQMD simulations with crossover phase transition.
The results from the HRG statistical fits well with the
STAR BES measurements [46–49] can be summarized as

– at 7.7GeV, Tch = 141MeV and μb = 412MeV with
χ2/dof = 11.7/9,

– at 11.5GeV, Tch = 150MeV and μb = 312MeV with
χ2/dof = 6.9/9 and

– at 19.6GeV, Tch = 153MeV and μb = 149MeV with
χ2/dof = 7.6/9.

The results from the statistical fit of the HRG calculations
to the UrQMD simulations at the considered values of the
collision energies can be found in table 1. It is obvious that
both sets of freezeout parameters are compatible with each
other.

3.2 Determining freezeout parameters

The study of the energy dependence of various particle ra-
tios paves the way towards determining the freezeout pa-
rameters, which are taken as free parameters in the HRG
approach, from UrQMD simulations. The statistical fit of
the HRG calculations to the UrQMD results is motivated
by the excellent agreement between UrQMD and STAR
particle ratios at the given RHIC-BES energies. The qual-
ity of the statistical fit is measured by minimum χ2 and q2

χ2 =
∑

i

(Rexp
i − Rtheor

i )2

σ2
i

,

q2 =
∑

i

(Rexp
i − Rtheor

i )2

(Rtheor
i )2

, (6)

where Rexp
i and Rtheor

i are the i-th measured and calcu-
lated particle ratio, respectively, and σi represents the er-
ror in its measurement. In UrQMD, σi is restricted to the
statistical errors of each particle ratio.

For the particle ratios K+/π+, K−/π−, π−/π+,
K−/K+, Λ/π−, p̄/p, Λ̄/Λ, Σ̄/Σ, p̄/π− and Ω/π− a com-
parison between the HRG statistical fits (dashed lines)
with the UrQMD simulations with a crossover phase tran-
sition (solid lines) and that with the STAR measure-
ments [46–49] at 7.7, 11.5 and 19.6GeV (open symbols)
is illustrated in panels (a), (c) and (e) of fig. 3. It is ap-
parent that the ability of hybrid UrQMD to generate the
STAR particle ratios increases with the beam energy. This
is also reflected in the corresponding χ2 per degrees of
freedom (dof), table 1. Same observation can be reported
from qualities of the HRG statistical fits for both UrQMD
and STAR results. The comparison between the hybrid
UrQMD simulations and the STAR measurements is illus-
trated in these three panels in order to argue for further
UrQMD simulations at other energies, such as 3, 5, 7, 9,
11, 13 and 19GeV.

Also, for the crossover phase transition, these ten par-
ticle ratios are depicted in panels (b) and (c) as well. Other
fits for the first-order phase transition will be illustrated
in fig. 4.

The resulting freezeout parameters from the hybrid-
UrQMD simulations with crossover and first-order phase
transition, tables 1 and 2, respectively, are depicted as
a thick-solid curve (crossover) and a dashed curve (first-
order phase transitions) in fig. 5. The present calcula-
tions are also compared with other estimations (symbols).
They are phenomenologically deduced freezeout parame-
ters from measured particle ratios: Cleymans et al. [50],
Tawfik et al. [25,26], HADES [51] and FOPI [52] and from
measured higher-order moments of net-proton multiplic-
ity —the SU(3) Polyakov linear-sigma model (PLSM) and
HRG [53]. The thin curve represents the HRG estimations
at the freezeout condition s/T 3 = 7. At a given μb which
is related to beam energy

√
sNN, eq. (5), the freezeout

temperature has been determined from the HRG model,
sect. 2.1, at which the freezeout condition s/T 3 � 7 is
nearly fulfilled.

It is obvious that the UrQMD results agree well with
the thermal-model calculations which are based on the
higher-order moments of the net-proton multiplicity [53].
Also, the calculations from the SU(3) PLSM are slightly
lower that both UrQMD variants. There is a very small
difference between UrQMD with crossover and first-order
phase transition as can be determined from tables 1
and 2. Accordingly, we conclude that the resulting freeze-
out parameters are not affected by the type of the phase
transition.

The main reason of the small difference between
crossover and first-order transitions could be that in our
UrQMD simulations the same value for the particlization
criterion was used in both cases. So, influence of this cri-
terion will be the subject for the next investigations.

When we determine the freezeout parameters from
the statistical fits of the HRG calculations to the mea-
sured particle ratios and when we compare them with the
fits to UrQMD, we observe that the first ones are rela-
tively higher. This might be due to the assumptions that
the constituents of the HRG model are point-like, i.e.,
no excluded-volume corrections were taken into account,
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Fig. 3. Assuming crossover phase transition, UrQMD particle ratios (solid lines) are fitted with the HRG calculations (dashed
lines): (a) at 7.7, (b) at 9, (c) at 11.5, (d) at 13 and (e) at 19.6 GeV. The resulting freezeout parameters Tch and μb are listed
in table 1. The open symbols give STAR BES measurements [46–49]. The smallest χ2/dof is given in each graph.

and the quark occupation factors are unity, i.e., light and
strange quarks equilibrium, i.e., γf factors, where f runs
over the quark flavors, which are multiplied by the quark
occupation parameters λi in eq. (2). At equilibrium, they
are omitted as their values are unity. In nonequilibrium,
the quark occupation factors should be stated.

4 Conclusion

Ten particle ratios are generated from the hybrid UrQMD
v3.4 at different nucleon-nucleon center-of-mass energies.

Two types of the quark-hadron phase transition, crossover
and first-order, are taken into consideration. The energy
dependence of the resulting particle ratios is compared
with the HRG calculations and different measured results
from the STAR experiments and from the UrQMD model.
Within the energy range considered in this study, a good
agreement is observed, at least qualitatively.

We observe that almost all particle ratios from both
types of phase transition are nearly indistinguishable, es-
pecially at lower energies (larger baryon chemical poten-
tials), which might be interpreted in such a way that the
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Fig. 4. The same as in fig. 3, but here a first-order phase transition is assumed in the hybrid UrQMD simulations at (a) 3, (b)
5, (c) 7, (d) 11 and (e) 19 GeV.

Table 2. The same as in table 1 but for hybrid UrQMD sim-
ulations with a first-order phase transition.

√
sNN [GeV] Tch [MeV] μb [MeV] χ2/dof

3 99 630 6.4/6

5 103 595 5.2/6

7 125 551 16.43/10

11 133 395 9.87/10

19 142 250 8.43/10

chemical freezeout, at which the particle number should
be fixed, apparently takes place immediately after the
hadronization process and accordingly the particle pro-
duction at this chemical equilibrium stage does not dif-
fer with respect to its origin. Concretely, we find that
for some particle ratios, the simulations with crossover
phase transition result in slightly higher temperatures if
crossover phase transition is considered than the ones in
first-order, and vice versa in other ratios. All particle-to-
antiparticle ratios are regularly resulting in slightly higher

 0
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UrQMD crossover
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Fig. 5. The resulting freezeout parameters (T vs. μ) from
hybrid-UrQMD simulations with crossover (solid (short) curve)
and first-order phase transition (long-dashed (short) curve)
compared with other phenomenological estimations (symbols).

temperatures for crossover phase transition. For these ra-
tios, the agreement between UrQMD or HRG calculations
and their measurements is fairly good.
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From the energy dependence of the UrQMD parti-
cle ratios and the conclusion that the HRG model quali-
tatively reproduces them and the STAR measurements,
as well, we have deduced both freezeout parameters.
In doing this, we assume that the UrQMD simulations
are experimental inputs. The corresponding uncertainty
is determined by statistical errors. We have determined
the freezeout parameters at STAR BES, 7.7, 11.5 and
19.6GeV, whose particle ratios are found compatible with
the UrQMD simulations with the crossover phase transi-
tion. The resulting freezeout parameters agree well with
the ones determined from the statistical-thermal fits of
STAR particle ratios at these given energies.

It is found that the resulting freezeout parameters from
hybrid UrQMD agree well with the HRG calculations, in
which higher-order moments of the net-proton multiplic-
ity are utilized. Furthermore, the freezeout temperatures
deduced from the SU(3) PLSM are slightly lower that the
ones from both of them. We conclude that the resulting
freezeout parameters are not influenced by the order of
the quark-hadron phase transition —or that the aforemen-
tioned particlization bias has a possible small influence.

The HRG freezeout parameters determined from the
statistical fit of the measured particle ratios are relatively
higher. This might be understood thanks to the assump-
tion of point-like constituents and equilibrium light- and
strange-quarks occupation factors assumed in the HRG
model.

Furthermore, the Parton-Hadron-String Dynamics
(PHSD) [54] and the Three-Fluid Hydrodynamics
(3FH) [55] are conjectured as alternatives to perform much
better than UrQMD at low energies, towards the NICA
energy range. In a future study, we plan to compare be-
tween all these approaches at NICA energies.
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